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[1] The second phase of the Global Land-Atmosphere
Coupling Experiment (GLACE-2) is aimed at quantifying,
with a suite of long-range forecast systems, the degree to
which realistic land surface initialization contributes to the
skill of subseasonal precipitation and air temperature
forecasts. Results, which focus here on North America,
show significant contributions to temperature prediction
skill out to two months across large portions of the
continent. For precipitation forecasts, contributions to skill
are much weaker but are still significant out to 45 days in
some locations. Skill levels increase markedly when
calculations are conditioned on the magnitude of the
initial soil moisture anomaly. Citation: Koster, R. D., et al.
(2010), Contribution of land surface initialization to subseasonal
forecast skill: First results from a multi-model experiment,
Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

1. Introduction

[2] To forecast precipitation, air temperature, and other
meteorological quantities weeks to months in advance,
prediction systems must take advantage of Earth system
components with implicit memory or predictability at such
timescales, components that can in turn transfer this pre-
dictability to the atmosphere. The ocean is thus a critical
component of today’s seasonal prediction systems. The
ocean, however, has limited impact on continental midlat-
itude areas during summer [e.g., Dirmeyer et al., 2003]. In
these areas, another component of the climate system, soil
moisture, is accordingly more important. The timescales of
soil moisture memory span weeks to a couple of months

[Entin et al., 2000]. During summer, high (low) soil moisture
anomalies can lead to high (low) evaporation anomalies,
and the associated increased (decreased) evaporative cool-
ing of the surface can lead to a cooling (warming) of the
overlying air [Fischer et al., 2007]. Depending on condi-
tions, the evaporation anomalies may also lead to precipi-
tation anomalies [e.g., Beljaars et al., 1996].
[3] The use of realistic soil moisture initialization is

starting to become standard practice in long-range forecast-
ing [e.g., Vitart et al., 2008], following on the assumption
that such better initialization will improve forecasts, an
assumption reflecting a long history of exploration of the
coupled soil moisture-atmosphere system and supported to
varying degrees by several recent uncoordinated forecasting
studies [e.g., Koster et al., 2004a, Douville, 2009]. The
second phase of the Global Land-Atmosphere Coupling
Experiment (GLACE-2), a project jointly sponsored by
the World Climate Research Programme’s Global Energy
and Water Cycle Experiment (GEWEX) and Climate
Variability Study (CLIVAR), is designed to evaluate that
assumption for the first time in a coordinated, comprehen-
sive, and systematic manner with a wide variety of state-
of-the-art long-range forecasting systems and with a forecast
collection substantial enough for robust statistics. The
overall goal of GLACE-2 is to provide, for the first time
for today’s models, a consensus view of the degree to which
soil moisture initialization contributes to forecast skill at the
subseasonal scale.
[4] First results from GLACE-2 are presented here. The

results provide some optimism for the usefulness of soil
moisture initialization, particularly when forecast skill
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calculations are conditioned on the size of the initial soil
moisture anomaly.

2. GLACE-2 Forecast Experiments
2.1. Overview of Experiment

[5] The basic design of the experiment, followed
(sometimes with second-order modifications) by all partic-
ipating groups, involves running two parallel sets of
2-month retrospective forecasts, the forecast for each start
date comprised of ten ensemble members (usually differing
from each other by slight variations in atmospheric initial
conditions). In the first set of forecasts, the initial land
prognostic variables for all ensemble members are set to the
same realistic values, using the approach described in
section 2b. In the second set, the initial land states are
chosen randomly for each ensemble member from a back-
ground distribution. (For some systems, this background
distribution reflects the contemporaneous sea surface tem-
perature, or SST, distribution; for most systems, it does not.)
SSTs for both sets are initialized to realistic values (Reynolds
and Smith [1994], with updates), and during the forecast
period, modelers either let the SSTs evolve within a coupled
ocean model or let them decay to climatology using persis-
tence timescales derived from the SST observations. For
most systems, atmospheric initial conditions were derived
from reanalysis for both sets.
[6] Forecasted precipitation, P, and near-surface air tem-

perature, T, values (ensemble means) for each of the two
sets are compared to observations to generate a skill score
for that set. Subtracting the skill score of the second series
(i.e., obtained without realistic land initialization) from that
of the first series (obtained with realistic land initialization)
isolates the contribution of land initialization to forecast
skill, the quantity of interest in this paper.
[7] To ensure a reasonable sample for statistical analysis,

both sets consist of 100 independent forecasts, one for each
of ten start dates (April 1, April 15, May 1, . . . August 15)
in each of the ten years spanning 1986 and 1995. In this
paper, we focus on forecasts at subseasonal leads, beyond
the realm of short-term weather forecasts. Forecasted P and
T were averaged over days 16–30, days 31–45, and days
46–60. For the June – August forecast periods considered
in this paper, this allows (for a given model) 60 independent
forecasts of P and T at each of these three leads for the
calculation of skill.

2.2. Estimation of Realistic Land Initial Conditions

[8] For the first series of forecasts, each modeling group
produced its own sets of realistic land initial conditions by
driving its own landmodel globally offline (i.e., disconnected
from the host atmospheric model) with realistic fields of
precipitation, radiation, and other meteorological forcings
over the years 1984–1995, essentially using the approach
employed in the 2nd phase of the Global Soil Wetness
Project (GSWP-2 [Dirmeyer et al., 2006]). (FSU/COAPS
used a coupled initialization approach instead.) Most groups
used the forcing datasets of GSWP-2, though some used
similar data extracted from Sheffield et al. [2006]. The land
surface prognostic fields simulated offline for 1 June 1990,
for example, were used to initialize the 1 June 1990 forecast
with the prediction system.

[9] Because the climatic forcing of atmospheric models is
biased relative to that of nature, however, the land fields
generated offline were ‘‘scaled’’ before they were used to
initialize the forecasts. In essence, the value of a variable
produced with the offline system was converted to a
standard normal deviate for the date in question, and this
standardized value was combined with the corresponding
mean and standard deviation of the atmospheric model to
produce the initialization value. (Some groups, in fact, used
a more rigorous scaling approach, and FSU/COAPS
avoided scaling altogether by using coupled land surface
data assimilation.) Imposed limits ensured that the soil
moistures produced were not unrealistic (e.g., above poros-
ity). This scaling ensures that a relatively wet soil moisture
condition is translated, to first order, to a correspondingly
wet condition within the atmospheric model’s climate.

2.3. Skill Metrics

[10] The daily precipitation observations used for forecast
evaluation were derived from station measurements [Higgins
et al., 2000], and the daily temperature observations used
were estimated by averaging the minimum and maximum
daily temperatures (again derived from station observations)
stored in the Hadley Centre archives (http://hadobs.metoffice.
com/hadghcnd/). All model and observational data were
regridded to the same 2! ! 2.5! global grid prior to analysis.
Furthermore, prior to analysis, all 15-day P and T values for
a given model or observational source were standardized:
the mean for the given time of year (for that dataset) was
subtracted, and the difference was divided by the standard
deviation for that time of year (for that dataset). This step
was critical for the estimation of a ‘‘consensus vision’’ of
skill in section 3.
[11] Forecasted 15-day average values of P and T (at

15-day, 30-day, and 45-day lead times) falling within any of
six boreal summer periods (essentially, the first and last
halves of June, July, and August) were compared to the
corresponding observational averages by plotting the stan-
dardized forecast/observation pairs on a scatter plot and then
computing the square of the correlation coefficient (r2)
between them. This r2 value represents the fraction of
explained variance and is our metric of forecast skill. (First,
though, negative correlations were set to zero, since they
were assumed to reflect sampling noise.) The difference
(hereafter, rdiff

2 ) between r2 for the forecast series with
realistic land initialization and that for the series without it
serves to quantify the contribution of land initialization to
skill.

2.4. Participants

[12] Ten modeling systems, itemized in Table 1, provided
the data analyzed in section 3. A few systems performed
half of the forecasts, those beginning on the first of the
month.

3. Results

[13] The contribution of land initialization to skill (rdiff
2 )

differs significantly between the models, as will be
addressed in an upcoming GLACE-2 overview paper. Here,
we provide some key results from a multi-model analysis.
We focus now on the United States region of North
America, a region for which two key considerations are
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met: the models are known to have substantial intrinsic
land-related precipitation variability [Koster et al., 2004b],
and observational data are known to be comprehensive.

3.1. Consensus Estimate of Land Contribution to Skill

[14] Figures 1a and 1b (All Dates) show the rdiff
2 levels for

precipitation and temperature, respectively, produced when
the standardized forecasts of all of the models are plotted
against observations on the same scatter plot. (Note the
unevenly spaced levels near the zero value on the color bar.)
The dots on Figures 1a and 1b indicate grid cells for which
the plotted rdiff

2 values differ significantly from zero at the
95% confidence level. The particular rdiff

2 value associated
with this significance level varies geographically and was
computed with a Monte Carlo analysis that accounts for
correlations in model behavior, which reduce the effective
degrees of freedom – given these correlations, the effective
degrees of freedom for N models and 60 forecasted periods
may be less than 60N. (In the Monte Carlo analysis, to test
the null hypothesis of zero land-related skill, sets of con-
temporaneous model forecasts were compared to repeated
shufflings of the standardized observational data.) Statistical
significance can also be gauged qualitatively by comparing
the amounts of positive and negative values in each plot.
Under the null hypothesis of zero skill from land initializa-
tion, roughly the same number of negative values should
appear as positive values; thus, if positive values over-
whelmingly dominate a plot, we can reasonably conclude
that land initialization-derived skill is indeed nonzero.
[15] For precipitation, rdiff

2 levels for the 15-day averages
at the 15-day lead (days 16–30) and 30-day lead (days 31–
45) are positive and significantly different from zero within

a west-east swath that cuts across the continent. The
magnitude of rdiff

2 in this swath, however, is quite small:
somewhere between 0.01 and 0.05. (Note that these are
differences between small numbers that themselves decrease
with lead time.) In other words, the multi-model consensus
view is that precipitation forecasts are improved by realistic
land initialization in this area, but only by a small and
possibly inconsequential amount. Even slighter skill
improvements are seen for the 15-day average at the 45-
day lead.
[16] For air temperature, Figure 1b (All Dates) shows that

at all three leads (i.e., out to the 45-day lead, for days 46–
60), land initialization’s contribution to skill is larger and
significant across much of the continent. The rdiff

2 values
often exceed 0.05 and sometimes exceed 0.1.

3.2. Conditional Skill Levels

[17] The multi-model scatter plots underlying the rdiff
2 cal-

culations discussed above form the starting point for a condi-
tional skill analysis: the quantification of P and T forecast
skill conditioned on the size of the initial (and local) soil
moisture anomaly. The idea is that more extreme values of
soil moisture initial conditions may have a more substantial
impact on a forecast than non-extreme values (values close
to the long-term mean for the given time of year). In the
multi-model scatter plot, an rdiff

2 value can be calculated for
a selected subset of the points – those points for which the
initial root zone soil moisture in the local area (the 3 ! 3
grid cell region centered on the point in question) lies at the
dry or wet ends of the full spectrum of simulated values.
Here, we examine rdiff

2 for three different subsets of the full
suite of forecasts: (1) those forecasts for which the initial

Table 1. Subseasonal-to-Seasonal Forecast Systems Participating in GLACE-2

System Name Reference JJA Forecast Periods Contributed

Canadian Centre for Climate
Modelling and Analysis
(CCCma) CanCM3

Scinocca et al. [2008] 30

Center for Ocean-Land-Atmosphere
Studies (COLA) GCM V3.2

Misra et al. [2007] 60

European Centre for Medium-Range Vitart et al. [2008] 60
Weather Forecasts (ECMWF)
Integrated Forecast System

Balsamo et al. [2009]
(http://www.ecmwf.int/research/
ifsdocs/CY33r1/index.html)

European Centre/Hamburg forecast
system (ECHAM/JSBACH)

Roeckner et al. [2003],
Raddatz et al. [2007]

30

Florida State University/Center for Shin et al. [2005] 60
Ocean-Atmosphere Prediction Studies
(FSU/COAPS) model

Cocke and LaRow [2000]

Geophysical Fluid Dynamics
Laboratory (GFDL) Global
Atmospheric Model

GFDL Global Atmospheric Model
Development Team [2004],
Delworth et al. [2006]

30

NASA/Global Modeling and
Assimilation Office (GMAO)
seasonal forecast system (pre-
GEOS5 version)

Bacmeister et al. [2000] 60

National Center for Atmospheric
Research (NCAR) Community
Atmospheric Model 3.0

Collins et al. [2006] 60

National Center for Atmospheric
Research (NCAR) Community
Atmospheric Model
3.5/Community Land Model 3.5

Neale et al. [2008],
Oleson et al. [2008]

60

National Centers of Environmental
Prediction (NCEP) Global
Forecast System (GFS/Noah)

Moorthi et al. [2001],
Ek et al. [2003]

60

L02402 KOSTER ET AL.: GLACE-2—SOIL MOISTURE AND FORECASTING L02402

3 of 6



soil moisture lies in either the upper or lower tercile of all
simulated values, a total of 40 independent forecast start
dates for each model; (2) those for which the initial soil
moisture lies in the first or fifth quintile of all simulated
values, a total of 24 independent forecast start dates; and
(3) those for which the initial soil moisture lies in the first or
tenth decile of all simulated values, a total of 12 indepen-
dent forecast start dates. Of course, the rdiff

2 calculations for

the third case are based on more than 12 forecasts, since the
12 forecasts from a number of models are considered
together in these scatter plots.
[18] This sub-setting approach implicitly assumes that

soil moisture impacts are mostly local; analyses of potential
remote impacts are saved for future study. It is important to
note that with this ‘‘local’’ assumption, the rdiff

2 levels
produced at different grid cells are based on a different

Figure 1. Precipitation and air temperature forecast skill as a function of lead and conditioning. (See text for details.) Dots
are shown where the plotted results are statistically different from zero at the 95% confidence level.
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selection of forecast dates (although a significant spatial
correlation of soil moisture will limit these differences). To
avoid the further complication of having different start dates
used for different models (based on the different, model-
dependent states generated in the GLACE-2 initialization
procedure), the start dates used in each sub-setting are
derived from an independent analysis of soil moisture
[Koster et al., 2009] for the 1986–1995 period. Daily root
zone soil moistures from seven land models participating in
GSWP-2, many of which did not participate in GLACE-2,
were standardized and then averaged on the day prior to
each of the forecast start dates. The 60 averages so obtained
were accordingly ranked and sampled.
[19] Results from the conditional skill analysis are shown

under Extreme Terciles, Extreme Quintiles, and Extreme
Deciles in Figures 1a and 1b. For both P and T, rdiff

2 levels
tend to increase with the ‘‘extreme nature’’ of the initial soil
moisture anomaly. The implication is straightforward: a
more extreme initial anomaly is more likely to contribute
to forecast skill. Noise, however, also increases as larger
extremes are considered because fewer data points are used
to compute the statistics; the significance levels for each
sub-setting were recomputed to reflect the smaller sample
size.
[20] For P, rdiff

2 in some places increases to 0.05 or more
when conditioning on extreme quintiles or deciles, even at
the 45-day lead (days 46–60). The increases are more
striking for T. When considering extreme deciles, rdiff

2 for
temperature exceeds 0.25 in many places, for all leads. For
both P and T, the positive rdiff

2 values generally dominate
strongly the negative values, further supporting the idea that
these skill increases are real, i.e., that realistic land initial-
ization does contribute skill to subseasonal forecasts.

4. Summary and Discussion

[21] GLACE-2 is designed to address, with a broad suite
of forecast systems and an extensive sample of forecast start
dates, a fundamental question in subseasonal forecasting: to
what extent does realistic land surface initialization increase
the skill of forecasts? Here, we present the first results from
GLACE-2 in the form of data composited across the
participating models. Figure 1 (All Dates) suggests that
over North America, realistic initialization has a very small,
if sometimes significant, impact on precipitation forecasts
out to a 30-day lead (days 31–45) and a somewhat larger
impact on temperature forecasts, even out to a 45-day lead
(days 46–60). Despite their small size, the skill contribu-
tions are important given the small skill levels obtained at
these leads with prediction systems, particularly in midlat-
itudes during summer. (Such small skill levels are seen, for
example, in the GLACE-2 results that do not use land
initialization and in 31-day-lead DEMETER and CFS fore-
casts, as recently processed by Lavers et al. [2009].)
[22] The GLACE-2 framework lends itself to a variety of

additional analyses, including studies of intrinsic land-
related model predictability, local versus remote land sur-
face impacts, probabilistic forecasting, optimal weighting
strategies for multi-model forecasts, and the potential for
asymmetry in land impacts – perhaps dry anomalies con-
tribute more to skill than wet anomalies. Such questions will
be addressed in future work. Here, we address the question

of conditional forecast skill. At the beginning of a forecast,
a forecaster would know the magnitude of the initial soil
moisture anomaly in a region of interest. If that anomaly is
large – if it lies, for example, in an extreme tercile, quintile,
or decile of its background distribution – the ensuing
forecast can be interpreted in the context of the conditional
skill contributions shown in Extreme Terciles, Extreme
Quintiles, and Extreme Deciles of Figure 1. A larger initial
soil moisture anomaly is more likely to contribute to a more
accurate precipitation and air temperature forecast, particu-
larly in the regions indicated in Figure 1. When considering
the benefit of realistic land initialization to subseasonal
prediction, the larger conditional skill contributions in
Figure 1 are a particular source of optimism.
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fully acknowledge financial support from NOAA’s Climate Prediction
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The various participants in the project (see Table 1) were able to perform
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from their home institutions and/or from the institutions hosting the
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